
The SmartOrchestra Platform:
A Configurable Smart Service Platform for IoT Systems

@InProceedings{SmartOrchestra_TheSmartOrchestra Platform,
 author = {Andreas Liebing and Lutz Ashauer and Uwe Breitenb{\"u}cher and
 Thomas G{\"u}nther and Michael Hahn and K{\'a}lm{\'a}n K{\'e}pes
 and Oliver Kopp and Frank Leymann and Bernhard Mitschang and
 Ana Cristina Franco da Silva and Ronald Steinke},
 title = {{The SmartOrchestra Platform: A Configurable Smart Service Platform
 for IoT Systems}},
 booktitle = {Papers from the 12th Advanced Summer School on
 Service-Oriented Computing (SummerSoC 2018)},
 publisher = {IBM Research Division},
 pages = {14--21},
 year = {2018}
}

:

Institute of Architecture of Application Systems

The full version of this publication has been presented as a poster at the Advanced
Summer School on Service Oriented Computing (SummerSoC 2018).

http://www.summersoc.eu

© 2018 IBM Research Division

1StoneOne AG, Berlin, Germany
andreas.liebing@stoneone.de

2University of Stuttgart, Stuttgart, Germany
[firstname.lastname]@informatik.uni-stuttgart.de

3Fraunhofer FOKUS, Berlin, Germany
[firstname.lastname]@fokus.fraunhofer.de

Andreas Liebing1, Lutz Ashauer1, Uwe Breitenbücher2,
Thomas Günther3, Michael Hahn2, Kálmán Képes2, Oliver Kopp2,
Frank Leymann2, Bernhard Mitschang2, Ana C. Franco da Silva2,

Ronald Steinke3

http://www.summersoc.eu/

The SmartOrchestra Platform:

A Configurable Smart Service Platform for IoT Systems

Andreas Liebing1, Lutz Ashauer1, Uwe Breitenbücher2, Thomas Günther3,

Michael Hahn2, Kálmán Képes2, Oliver Kopp2, Frank Leymann2,

Bernhard Mitschang2, Ana C. Franco da Silva2, and Ronald Steinke3

1 StoneOne AG, Berlin, Germany
andreas.liebing@stoneone.de

2 University of Stuttgart, Stuttgart, Germany
[firstname.lastname]@informatik.uni-stuttgart.de

3 Fraunhofer FOKUS, Berlin, Germany
[firstname.lastname]@fokus.fraunhofer.de

Abstract. The Internet of Things is growing rapidly while still missing a univer-

sal operating and management platform for multiple diverse use cases. Such a

platform should provide all necessary functionalities and the underlying infra-

structure for the setup, execution and composition of Smart Services. The concept

of Smart Services enables the connection and integration of cyber-physical sys-

tems (CPS) and technologies (i.e., sensors and actuators) with business-related

applications and services. Therefore, the SmartOrchestra Platform provides an

open and standards-based service platform for the utilization of public adminis-

trative and business-related Smart Services. It combines the features of an oper-

ating platform, a marketplace, a broker, and a notary for a cloud-based operation

of Smart Services. Thus, users of cyber-physical systems are free to choose their

control applications, no matter what device they are using (e.g., smartphone, tab-

let or personal computer) and they also become independent of the manufactur-

ers’ software. This will enable new business opportunities for different stake-

holders in the market and allows flexibly composing Smart Services.

Keywords: SmartOrchestra Platform, Smart Services, Cyber-Physical Systems,

Internet of Things

1 Introduction

The Internet of Things (IoT) paradigm has received great attention in the last years

leading to a vast amount of heterogeneous IoT middleware, protocols and devices (e.g.,

sensors, actuators or gateways). Related IoT applications, for example, implementing

the processing of sensor data in order to control an actuator, therefore need to be bound

to certain concrete technologies, hardware devices, and protocols. This makes it a chal-

lenge to enable the interoperability and composition of different IoT applications, for

example, to compose them to solve problems on another scale (e.g., from automating

mailto:andreas.liebing@stoneone.de

2

houses over streets to cities). Another challenge is the distributed nature of IoT envi-

ronments and the large number of devices, which makes it infeasible to deploy and

manage IoT applications together with their required software and middleware compo-

nents manually. Therefore, a universal operating and management platform for multiple

diverse IoT use cases is needed which enables interoperability and automated deploy-

ment for IoT applications through Smart Services. The concept of Smart Services ena-

bles the connection and integration of cyber-physical systems (CPS) and technologies

(i.e., sensors and actuators) with business-related applications and services. Such a plat-

form should provide all necessary functionalities and the underlying infrastructure for

the setup, execution and composition of Smart Services. Within this work, we introduce

the SmartOrchestra Platform, which provides an open and standards-based service

platform for the utilization of public administrative and business-related Smart Ser-

vices. Therefore, it combines the features of an operating platform, a marketplace, a

broker, and a notary for a cloud-based operation of Smart Services. Thus, users of

cyber-physical systems are free to choose their control applications, no matter what

device they are using (e.g., smartphone, tablet, or personal computer) and they also

become independent of the manufacturers’ software. This will enable and provide new

business opportunities for different stakeholders in the market and allows flexibly uti-

lizing and composing Smart Services.

The remainder of the paper starts with an introduction of the SmartOrchestra Plat-

form and its major building blocks in Sect. 2. This is followed by a description how the

introduced components of the platform work together to provide a universal operating

and management platform for multiple diverse IoT use cases in Sect. 3. Finally, a sum-

mary of the paper is given in Sect. 4.

2 The SmartOrchestra Platform

The SmartOrchestra Platform enables a uniform service description as well as a secure

and safe internet-based composition and integration of heterogeneous cyber-physical

systems and services based on standardized cloud and orchestration technologies. The

platform serves both, a transparent catalog to evaluate suitable services from a wide-

spread ecosystem as well as an operational platform and interface between control de-

vices and sensor units with their respective applications. In this way, the platform will

be an open, secure, and standardized Smart Service Platform.

The conceptual design of the SmartOrchestra Platform and its major building blocks

in combination with provisioning workflows and IoT devices is depicted in Fig. 1. The

main entry point to the platform is the Marketplace, which allows users to evaluate, run

and compose existing services from the Service Catalog as well as provide and market

new services. To deploy and configure Smart Services OpenTOSCA [2] is used as Pro-

visioning Engine. The Provisioning Engine is responsible for the automated deploy-

ment of a Smart Service and the configuration of its underlying infrastructure. For ex-

ample, this can comprise the installation of related software services in the Cloud

3

providing the business logic of a Smart Service (e.g., data filtering, processing, or ag-

gregation [13]), the configuration of IoT devices and gateways, and installing required

software on them.

Fig. 1. SmartOrchstra Platform Architecture

For the integration of IoT devices into Smart Services, the SmartOrchestra Platform

uses OpenMTC [6, 15] as IoT Integration Middleware [16, 17]. OpenMTC provides

required protocols and adapters to integrate and mediate between the heterogeneous

devices, sensors, and actuators within the SmartOrchestra Platform. Therefore, it comes

with an embedded service layer that enables communication between devices through

a Publish/Subscribe model. Furthermore, the platform provides the FIWARE Orion

Context Broker [9] as Context Broker. While OpenMTC is responsible for enabling the

communication between devices, sensors and actuators through corresponding generic

interfaces, the FIWARE Orion Context Broker in combination with the FIWARE Short

Time Historic [10] is used as a midterm data repository to enable later analysis of data

provided by IoT devices. Therefore, OpenMTC synchronizes all published data to re-

spective entities at the FIWARE broker as depicted by the synch arrows in Fig. 1.

In the following, each of the building blocks of the platform is described in more

detail. Furthermore, the interplay of the components is outlined in order to give an idea

how the overall SmartOrchestra Platform operates.

2.1 Marketplace and IoT Operating Platform

The open and secure SmartOrchestra marketplace brings together and combines intel-

ligent private, industrial, and municipal Smart Services. This results in new innovative

4

services that make data available for use. The marketplace allows for browsing, choos-

ing, and configuring of Smart Services. Data of each running service can also be accu-

mulated and visualized in the marketplace via customer specific dashboards including

widgets and configurable taxonomies for structured presentation. Smart Services and/or

data channels can be combined and orchestrated by rules and actions. The parameters

of devices or services can be changed during runtime of the service. This turns the

marketplace into an IoT Operating Platform.

2.2 Provisioning Engine: OpenTOSCA

The SmartOrchestra Platform enables the deployment of Smart Services by employing

OpenTOSCA [2, 12] as Provisioning Engine. OpenTOSCA is an open-source ecosys-

tem for the modeling, provisioning, and management of cloud applications based on

the OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA)

standard [1, 3, 21] and supporting concepts for CPS and IoT [19, 22–24]. In TOSCA,

the structure of an application, e.g., a Smart Service, is described using topology mod-

els. These models are represented as graphs containing typed nodes and directed typed

edges. Nodes, called node templates, represent the software components of a Smart

Service, while edges, called relationship templates, describe the relationships among

the components, e.g., dependencies and connections.

TOSCA offers two approaches to application provisioning: (i) a declarative ap-

proach and (ii) an imperative approach [4, 5]. In the declarative approach, only the

topology model has to be provided to a provisioning engine, which implicitly knows

how to set up the application components. More precisely, it is sufficient to describe

what needs to be provisioned, and not how this needs to be done. In contrast, the im-

perative approach relies on explicitly describing how an application has to be hosted.

To realize this, a so called Build Plan has to be provided that describes, which steps

have to be executed to set up the components of the topology.

The OpenTOSCA ecosystem is composed of following: (i) the graphical TOSCA

modeling tool Eclipse Winery [20] and (ii) the TOSCA runtime environment Open-

TOSCA container. Once the topology of a Smart Service is modeled using Eclipse

Winery, it can be optionally checked against a collection of compliance rules [7] and

exported as a Cloud Service Archive (CSAR), which can be deployed into the Open-

TOSCA container to provision and instantiate the Smart Service. The provisioning of

Smart Services can be secured by the specification of non-functional requirements

through policies [18].

OpenTOSCA allows for an easy integration with other systems through its provided

APIs, which offer the main functionalities to automatically provision applications using

the OpenTOSCA container, and afterwards, retrieve information about the instantiated

applications. The Marketplace, which is the user’s entry point to the SmartOrchestra

Platform, is integrated with OpenTOSCA through the provided OpenTOSCA API. In

this way, the Marketplace can, for example, configure and automatically provision

Smart Services, and retrieve information about all available Smart Services.

5

2.3 IoT Integration Middleware: OpenMTC

The OpenMTC platform [6, 15] is an open-source implementation of the oneM2M

standard1, which intends to support machine-to-machine (M2M) communication for

applications in a simplified way. Furthermore, OpenMTC is as well available as a Ge-

neric Enabler in the FIWARE Catalogue [14].

OpenMTC consists of a gateway and backend component that provides a REST API

and uses the CRUD principle for managing resources. Through protocol adapters,

OpenMTC is able to interact with various devices of different technologies. Thus, in-

formation from heterogeneous data sources will be unified in a harmonized data model,

so that applications can easily access the data without the need to know the device spe-

cific technologies. Furthermore, data can be already preprocessed close to the source

before they are send to other endpoints.

OpenMTC has a generic request/response model that can be mapped on different

transport protocols, e.g., HTTP or MQTT. The provided functionality includes regis-

tration of applications, discovery of resources, subscription to new data, simplified ad-

dressing of resources, scheduled communication, and more [11].

2.4 Context Broker: FIWARE Orion Context Broker

The Orion Context Broker [9] is the main component of the FIWARE platform [8].

Through its REST API, the Broker allows the registration of context elements, which

can be updated by context producers. Furthermore, context consumers can either query

these context elements or subscribe to them to get notifications when the context ele-

ments are updated [11]. The Orion Context Broker can be configured through the mar-

ketplace to automatically work together with another FIWARE Generic Enabler, the

FIWARE Short Time Historic [10], which is used for midterm storage of data.

3 Interplay of the SmartOrchestra Platform Components

In this section, we describe the interaction with the platform and the interplay of the

platform components. Consequently, the interplay is described based on the different

roles that interact with the SmartOrchestra Platform (cf. Fig. 1): Smart Service Instan-

tiators and Smart Service Consumers.

The role of a Smart Service Instantiator is to provision different Smart Services from

within the Service Catalog using the provided interfaces given by the IoT Operating

Platform. These services can then be used by the Smart Service Consumers for their

own applications. The Smart Service Instantiator is responsible for providing relevant

data, such as credentials and endpoints, to enable access to the IoT Devices for the Pro-

visioning Engine and therefore to enable the installation of different software compo-

nents. To realize the integration of the IoT Devices into the platform, these software

components, such as adapters and gateways, are responsible for binding the used hard-

ware to the IoT Integration Middleware by sending the relevant data from the sensors

1 http://www.onem2m.org/

6

and enabling the invocation of operations on actuators. As stated in the previous sec-

tion, the IoT Integration Middleware is used as the first layer to integrate heterogeneous

IoT hardware, while the Context Broker component is used as a second layer to store

data from the sensors for midterm data analysis within the SmartOrchestra Platform.

The synchronization of the data across the IoT Integration Middleware and the Con-

text Broker is based on a bi-directional exchange between respective entities managed

by each of the components. These entities are automatically created when the provi-

sioning of the software components is finished and therefore require no additional effort

from the Smart Service Instantiator. After the provisioning and as soon as OpenMTC

and the FIWARE broker receive data from sensors and actuators, a Smart Service Con-

sumer is able to subscribe on the available data or issue commands through correspond-

ing topics provided by the Topic Registry of the platform. Based on that, Smart Service

Consumers are able to integrate Smart Services operated and managed through the

SmartOrchestra Platform into their business applications.

4 Summary

This work presented the SmartOrchestra Platform as an enabler for interoperability,

automated deployment and composition of IoT applications through Smart Services.

Thereby, the different components of the platform build on well-established standards

such as TOSCA for application provisioning and management or oneM2M for ma-

chine-to-machine communication and IoT. The result is an open and standards-based

platform for the utilization of public administrative and business-related Smart Services

by combining the features of an operating platform, a marketplace, a broker, and a no-

tary for a cloud-based operation of Smart Services.

Acknowledgments This work is funded by the BMWi project SmartOrchestra

(01MD16001F).

References

1. Bergmayr, A., Breitenbücher, U., Ferry, N., Rossini, A., Solberg, A., Wimmer, M.,

et al.: A Systematic Review of Cloud Modeling Languages. ACM Computing Sur-

veys. 51, 1, (2018).

2. Binz, T., Breitenbücher, U., Haupt, F., Kopp, O., Leymann, F., Nowak, A., et al.:

OpenTOSCA – A Runtime for TOSCA-based Cloud Applications. In: ICSOC.

(2013).

3. Binz, T., Breiter, G., Leymann, F., Spatzier, T.: Portable Cloud Services Using

TOSCA. IEEE Internet Computing. 16, 03, (2012).

4. Breitenbücher, U., Binz, T., Képes, K., Kopp, O., Leymann, F., Wettinger, J.:

Combining Declarative and Imperative Cloud Application Provisioning based on

TOSCA. In: IC2E. IEEE (2014).

7

5. Breitenbücher, U., Képes, K., Leymann, F., Wurster, M.: Declarative vs. Impera-

tive: How to Model the Automated Deployment of IoT Applications? In: Summer-

SOC. IBM Research Report (2017).

6. Corici, M., Coskun, H., Elmangoush, A., Kurniawan, A., Mao, T., Magedanz, T.,

et al.: OpenMTC: Prototyping Machine Type communication in carrier grade op-

erator networks. In: IEEE Globecom Workshops. (2012).

7. Fischer, M.P., Breitenbücher, U., Képes, K., Leymann, F.: Towards an Approach

for Automatically Checking Compliance Rules in Deployment Models. In:

SECURWARE. Xpert Publishing Services (2017).

8. FIWARE: FIWARE Catalogue, https://www.fiware.org/developers/catalogue/.

9. FIWARE: Orion Context Broker, https://www.github.com/telefonicaid/fiware-

orion.

10. FIWARE: Short Time Historic (STH) – Comet, https://github.com/telefonicaid/fi-

ware-sth-comet.

11. Franco da Silva, A.C., Breitenbücher, U., Hirmer, P., Képes, K., Kopp, O., Frank

Leymann, et al.: Internet of Things Out of the Box: Using TOSCA for Automating

the Deployment of IoT Environments. In: CLOSER. (2017).

12. Franco da Silva, A.C., Breitenbücher, U., Képes, K., Kopp, O., Leymann, F.:

OpenTOSCA for IoT: Automating the Deployment of IoT Applications based on

the Mosquitto Message Broker. In: IoT. ACM (2016).

13. Franco da Silva, A.C., Hirmer, P., Breitenbücher, U., Kopp, O., Mitschang, B.:

Customization and provisioning of complex event processing using TOSCA.

Computer Science - Research and Development. (2017).

14. Fraunhofer FOKUS: OpenMTC Generic Enabler, https://catalogue.fiware.org/en-

ablers/openmtc.

15. Fraunhofer FOKUS: OpenMTC Platform Architecture, http://www.open-

mtc.org/index.html#MainFeatures.

16. Guth, J., Breitenbücher, U., Falkenthal, M., Fremantle, P., Kopp, O., Leymann, F.,

et al.: A Detailed Analysis of IoT Platform Architectures: Concepts, Similarities,

and Differences. Presented at the (2018).

17. Guth, J., Breitenbücher, U., Falkenthal, M., Leymann, F., Reinfurt, L.: Compari-

son of IoT Platform Architectures: A Field Study based on a Reference Architec-

ture. In: CIoT. IEEE (2016).

18. Képes, K., Breitenbücher, U., Fischer, M.P., Leymann, F., Zimmermann, M.: Pol-

icy-Aware Provisioning Plan Generation for TOSCA-based Applications. In:

SECURWARE. Xpert Publishing Services (2017).

19. Képes, K., Breitenbücher, U., Leymann, F.: Integrating IoT Devices Based on Au-

tomatically Generated Scale-Out Plans. In: SOCA. IEEE (2018).

20. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: Winery – A Modeling Tool

for TOSCA-based Cloud Applications. In: ICSOC. (2013).

21. OASIS: Topology and Orchestration Specification for Cloud Applications

(TOSCA) Version 1.0. (2013).

22. Saatkamp, K., Breitenbücher, U., Leymann, F., Wurster, M.: Generic Driver In-

jection for Automated IoT Application Deployments. In: iiWAS. ACM (2017).

8

23. Franco da Silva, A.C., Hirmer, P., Breitenbücher, U., Kopp, O., Mitschang, B.:

TDLIoT: A Topic Description Language for the Internet of Things. In: ICWE.

Springer Berlin Heidelberg (2018).

24. Zimmermann, M., Breitenbücher, U., Leymann, F.: A TOSCA-based Program-

ming Model for Interacting Components of Automatically Deployed Cloud and

IoT Applications. In: ICEIS. SciTePress (2017).

All links were last followed on July 18, 2018.

